skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Yongjia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mission-critical systems often require some testing to occur while the system is running. In many cases, this involves taking parts of the system off-line temporarily to apply the tests. However, hazards that occur during regular processor execution require the addition of stall cycles to maintain program correctness. These stall cycles generally perform no other function. In this paper, we focus on testing the ALU during those stall cycles to identify new errors or defects that arise during program execution due to aging and increased temperature that may slow down the circuitry or cause permanent defects. We investigate the time to detection of a fault (both stuck-at and transition) that may have caused silent data corruption. In addition, we identify the relationship between the programs running and the list of functional faults and how this impacts the test set length. Finally, we discuss area and performance impacts for the physical implementation of the approach. 
    more » « less
  2. null (Ed.)
    • To compute protein pKas, a continuum dielectric Poisson-Boltzmann model defined on a molecular domain and a solvent domain is used for computing the related electrostatic free energies (top left). • The PB model in its boundary integral form is accurately solved on the triangulated molecular surface (e.g. BPTI) accelerated by a fast Treecode algorithm (top right). • The method obtains the intrinsic pKa and then computes the protonation probability for a given pH including site-site interactions by going through an energy driven titrating procedure. Comparison with experimental results are provided (bottom left and right). 
    more » « less